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The Elastic Constants of Monoclinic Potassium Hydrogen Oxalate 
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The elastic constants of the monoclinic crystal K H C 2 0 4  were  measured by diffraction of light by ul- 
trasonic waves. An extremely high elastic anisotropy was observed which is attributed to hydrogen 
bonds. Force constants derived from the maximum elastic stiffness are compared with force constants 
of hydrogen bonds and of the oxalate residue determined from infrared measurements. 

Introduction 

Previous measurements of the elastic constants of 
acid oxalates (Ktippers & Siegert, 1970; Kiippers, 
1972b) revealed an extraordinarily high elastic aniso- 
tropy which it has been suggested is caused by the hy- 
drogen bonds between the oxalate residues. In the pres- 
ent paper the elastic constants of another acid oxalate, 
KHC204, are reported. This compound should - by 
analogy with the structure of the crystals previously 
measured - also exhibit extreme anisotropic effects. It 
is a further purpose of this study to compare force con- 
stants as derived from infrared and Raman spectra with 
force constants which are deduced from elastic meas- 
urements. 

Methods and results 

Large single crystals were grown from aqueous solu- 
tion by lowering the temperature from 65 to 35°C 
(Ktippers, 1972a). Sound velocities were measured by 
the Schaefer-Bergmann method as improved by 
Haussiihl (1956), i. e. by diffraction of a light beam by 
standing ultrasonic waves excited in rectangular speci- 
mens (average dimension 1 cm). 
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Fig. 1. Stereogram representing the Cartesian axes e~, the 
crystallographic axes ai and the positions of maximum and 
minimum longitudinal stiffness c;m and compliance s~l. 
(indicated by crosses). 

KHC20 4 belongs to the monoclinic system. In order 
to determine the 13 components of the elastic tensor, at 
least 13 independent measurements are necessary. Ad- 
ditional measurements increase the accuracy. The crys- 
tal structure was explored by Hendricks (1935) and was 
refined by Pedersen (1968) and by Einspahr, Marsh & 
Donohue (1972). In the present paper the crystallo- 
graphic coordinate system was chosen according to 
Groth (1910) and Hendricks (1935) because this is more 
closely related to the crystal morphology and physical 
properties than that used by Pedersen (1968) and Ein- 
spahr et al. (1972). The elastic constants are to be re- 
ferred to a Cartesian system % with c 3 parallel to a3, 
ez parallel to az, and el parallel to ez^e3 (see Fig. 1). 

In birefringent crystals complications in measuring 
the sound velocities may occur if the light beam to be 
diffracted undergoes double refraction (Ktippers, 1971). 
In order to correct for deviations from the usual dif- 
fraction geometry caused by this effect, the size and 
position of the indicatrix must be known. The refrac- 
tive indices of KHC204 reported in the literature differ 
(Winchell, 1954). Therefore, a new determination was 
made using the prism method. The principal axes of the 
indicatrix were found to coincide with the Cartesian 
axes ei within the measuring accuracy. The measured 
refractive indices ni, referred to the Cartesian axes, for 
various wavelengths are listed in Table 1. 

Table 1. Refractive indices for various wavelengths 
2[nm] nl n2 n3 
632 1.372 1"571 1-549 
589 1"373 1.574 1"551 
546 1"374 1"578 1-555 
436 1"379 1.592 1"565 

The large optical anisotropy found in KHC204 re- 
quires careful attention to the deviations mentioned 
above. In order to avoid tedious adjustments and cor- 
rections as described previously (Ktippers, 1971) the 
specimens were prepared with such orientation that at 
least one face-normal lies on principal sections of the 
indicatrix. Then at least one ray exists (with polariza- 
tion perpendicular to the principal section) which does 
not undergo double refraction. If this ray is chosen for 
the measurement, no correction is needed. Such choice 
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of measuring directions is also recommended for future 
measurements of elastic constants in monoclinic as 
well as triclinic crystals. 

21 sound velocities were measured at 20°C along 12 
different, uniformly distributed directions. The elastic 
constants (stiffnesses) Cm, calculated from these vel- 
ocities by the method described by Hausstihl & Siegert 
(1969) are listed in Table 2. A density of 2.064 g c m  -a 
was assumed. Table 2 also contains the elastic compli- 
ances sin, which were obtained from the c ..... by matrix 
inversion. The errors were obtained from the least- 
squares computation. The volume compressibility, K=  

3 

- 0  log V/?p= ~, SUkk is found to be K=6-85 .  10 -lz 
k , i = l  

cm z dyne-  ~. 
The extrema of longitudinal stiffness, c£1n= 

a~aajalka, c~kt, were derived by rotation of the refer- 
ence system within the mirror plane. The maximum 
and minimum values and the direction cosines of the 
corresponding directions (given in brackets) are: 

c'ma~=8"797 10~dyne cm-2(0.0419 • 0.0; 0.9991) 1111 • 

c'mtn= 1"468 10Hdyne cm-2(0"9753 • 0"0; 0-2121). ! I l l  • 

Extremal values of the s tensor and corresponding di- 
rection cosines were found to be: 

s'mtn__ 1"234 10-1Zcm dyne-~(0"0454; 0"0; 0"9990) 1111 - -  

s'max_ 14"41 10-1Zcm dyne-l(0.8805 • 0.0; 0.4741) 1111 - -  • , • 

While s ~  n almost exactly coincides with ,~'max ,.'max is t - l l l i  , °1111 

shifted by a considerable amount toward [001]. The 
respective directions are indicated in Fig. 1 by crosses. 

Discussion 
Anisotropy 

The elastic anisotropy which may be defined as the 
ratio of maximum to minimum longitudinal stiffness 
c~m (or longitudinal compliance s~m) has the follow- 
ing magnitude in the present case: 

c ' m a x  e ' m a x  

llll = 6 " 0 "  "ltlt -- 11"6 
. , ' m i n  ' v ' m i n  " 
C l l l l  o1111 

These are the largest elastic anisotropies observed hith- 
erto in crystals. Respective values of ~'max/e,'min and t - l l l l  / t - l l l l  

s;~X/s;~] n (given in brackets) for other crystals exhibit- 
ing high elastic anisotropies are: tartaric acid: 5.2 (5.0) 
(Mason, 1950), ammonium and potassium tetroxalate 
dihydrate: 4.7 (7.0) and 4.2 (7.2) (Kiippers & Siegert, 
1970), ammonium hydrogen oxalate hemihydrate: 4.6 
(5.8) (Kiippers, 1972b). 

A common characteristic of the crystal structures of 
the compounds listed above is the formation of hydro- 
gen bonds which preferentially extend in one direction 
This direction could be correlated with the direction of 
maximum elastic stiffness (Ktippers, 1972b). 

In the crystal structure of KHCzO4 (space group 
P2Jc) the arrangement of the oxalate residues and the 

direction of the hydrogen bonds is demonstrated by 
Fig. 2 which was drawn according to Einspahr, Marsh 
& Donohue (1972). The structure consists of parallel 
chains of hydrogen oxalate ions joined by hydrogen 
bonds and extending in the [001] direction. These chains 
are linked transversely by K-O electrostatic forces, the 
K ÷ ion being coordinated by seven oxygens. The aver- 
age plane made up by the six atoms of the C204 group 
lies nearly normal to el. Because five of seven K-O 
bonds are employed to link oxalate residues mutually 
within their average planes, a layer-like structure is 
achieved, as may be seen in Fig. 2. As a consequence, 
a pronounced cleavage is observed at (100). Only two 
K-O bonds, designated A and B in Fig. 2, contribute 
to the mutual cohesion of the layers. 

These structural characteristics readily allow one to 

O = t t  

Fig. 2. Perspective view of the structure of KHC204 as seen 
down the a2 axis. Bold circles represent atoms in the upper 
portion, faint circles those in the lower portion of the unit 
cell. 

T e, 1 (- 6,,) 
I 
I : --] 
I : - e , ~  

I 
! 
I_  e, 

Fig. 3. Schematic representation of the bonds connecting the 
layers. 
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explain the main features of elastic behaviour. The 
graduation of the principal constants, cm c22, c33, fol- 
lows from the fact that the structure is primarily com- 
posed of firm layers which themselves consist of even 
stronger chains. Hence, maximum elastic stiffness is de- 
termined by the direction of the hydrogen-bonded 
chains parallel to [001]. Minimum elastic stiffness 
should be found approximately perpendicular to the 
layers, i. e. parallel to el. The shift of the measured 
minimum (Fig. 1) toward e3 might be explained by the 
different inclinations of bonds A and B relative to e~ 
(cf. Figs. 2 and 3). Since the force constant is a second- 
rank tensor, the magnitude of each bond strength de- 
creases with cos 2 ~0 on rotation of the reference system 
by cp. Assuming central forces and equal force con- 
stants for A and B, a minimum in the resultant force 
constant occurs between the directions of A and B in a 
direction which has shifted towards bond A. 

The large strength of the chains also explains the rel- 
ative magnitudes of the constants s~2, s13 and s23. If a 
stress a~t or azz is applied to the crystal, the chains allow 
only a small strain e33. Therefore, the constants s13 and 
s23 (i. e. those containing index 3) are smaller than s~2 
which relates the strain e22 to the stress a~ and e~ to 
0"22. 

Since bonds A and B are the weakest parts of the 
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Fig. 4. Propagation directions k (bold vectors) with corre- 
sponding displacement vectors s (da;hed) of quasi-longitu- 
dinal waves within the mirror plane. 

structure, further consequences can be deduced from 
their asymmetric configuration relative to el. In Fig. 3, 
an upper layer is represented by an atom K, a lower by 
two oxygens O. The layers are assumed to be rigid. If 
a pressure, - a l l ,  due to the force represented by the 
arrow in Fig. 3, is applied, the upper plane will shift to 
the left, as indicated by a second arrow S. Thus, a 
negative shear strain results (a rectangular area will be- 
come deformed into a rhombus as drawn in the right 
part of Fig. 3). Therefore, the compliance s15 =sma, 
which is defined by /~13=s1311ffll, should be positive, 
which is in agreement with the value determined exper- 
imentally (cf. Table 2). The layerlike structure also ac- 
counts for the relative magnitudes of the three shear 
coefficients, c44 , Css , and c66. Shear strains e~z and ex3 
result when the layers are displaced one relative to the 
other, parallel to ea or e2. The appropiate resistances 
occuring during such deformation, c55 and c66 , are evi- 
dently lower than c44 which corresponds to a torsion 
within the layers. 

As a consequence of the high elastic anisotropy, ex- 
traordinary phenomena concerning the propagation of 
elastic waves appear. In this case also the predominance 
of direction e3 becomes evident. Fig. 4 shows the dis- 
placement vectors (dashed) due to different propaga- 
tion directions (bold vectors) of quasi-longitudinal 
waves within the mirror plane. Evidently, within a 
large angular interval the displacement is nearly paral- 
lel to e 3. Therefore, between e~ and e3, extreme devia- 
tions from purely longitudinal character occur. A wave 
propagating in a direction inclined by 30 ° to e~ (towards 
ez) possesses a displacement vector which is inclined by 
44.5 ° to the propagation direction. 

Fig. 5 shows the (010) section of the slowness surface 
of quasi-longitudinal waves. The normals to this curve 
have the directions of the corresponding rays (direc- 
tions of energy flux). Again, within a large angular in- 
terval, the energy flux is nearly parallel to ea. Extra- 
ordinarily strong deviations from collinearity are obser- 
ved in the interval between e~ and e3: when a quasi- 
longitudinal wave propagates in a direction inclined at 
30 ° to e~ (as indicated in Fig. 5), the corresponding ray 
is inclined by about 52 ° to the wave normal. 

Force constants 
The qualitative graduation of the three principal con- 

stants, c11, c22, and c33, was already made plausible in the 
previous section. For a quantitative explanation the 
interatomic potentials must be known. These are, for 
ionic interaction in complicated structures, not known 
with a sufficient accuracy. Therefore, we merely note 
that the values of cxl and Czz which are predominantly 

Table 2. Elastic st(finesses c,.,,( x 10 '~ dyne cm-2), relative errors d c,../c,.,, and elastic compliances s,,,,,( x I0-12 cm 2 
dyne-1) o f  KHCzO4 at 20°C 

m n  11 22 33 12 13 23 44 55 66 15 25 35 46 
c,,, 1.563 4-446 8-771 1-550 0.824 1.709 i .744 0.360 0.461 - 0 . 1 5 0  - 0 . 0 1 0  0.309 0.010 
Ac/c 0.4 % 0.2 % 0.2 % 0.8 % 1.8 % 0.6 % 0.4 % 1.5 % 1.5 % 2.7 % - 1.4 % - 
s,,, 10.556 3 .590 1-297 -3.484 -0"479 -0"334 5.735 30-823 21.677 4-704 - 1-060 - 1"322 -0"126 
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caused by ionic forces are in the range which is usually 
observed in salts of organic acids (Bechmann, 1966, 
1969; Kfippers, 1972b). But c33, which is out of the usu- 
al range and which is chiefly caused by the stiffness of 
the chains, can be correlated with other physical pro- 
perties, i.e. with molecular force constants which have 
been determined from infrared and Raman measure- 
ments. Therefore, in the following, the stiffness of the 
chains as deduced from the elastic constant c33 will be 
compared with the stiffness as calculated from force 
constants. Molecular force constants have also been 
used by Jaswon, Gillis & Mark (1968) in order to de- 
termine the theoretical stiffness of crystalline native 
cellulose. 

In KHC204, the longitudinal stiffness of the chain 
(see Fig. 6) is essentially determined: (a) by the stiffness 
of the hydrogen bond O(4)-H-O(2) which is inclined 
only by 2 ° to the chain direction e3 and which is a com- 
posite of two stretching constants foil andfH, (b) by a 
force constant fcoo which is due to the bending of the 
O(2)-C(1)-C(2) bonds, and (c) by a force constant 
fcooH which is due to the bending of the C(1)-C(2)-O(4) 
bonds. The resultant force constant f of the constituent 
unit is given by 

1//= l / f u +  l / fon+ l / f coo+ l/fcoou . (1) 

Force constants of hydrogen bonds of type O . . .  H-O 
have been determined in different compounds from in- 
frared and Raman spectra by Nakamoto, Sarma & 
Ogoshi (1965). A strong dependence on O. • • O distance 
and on the collinearity of the O(4)-H bond with the 
lone-pair orbital of the 0(2) atom (Ogoshi & Nakamoto, 
1966) has been observed. Since, in KHC204, angle C(1)- 
0(2)-0(4) is found to be 123 °, this collinearity is 
assured. Interpolating the measurements of Nakamoto 
et al. (1965), a stretching force constant fH of about 
0.95.105 dyne cm -1 and foil of about 2.52. l0 s dyne 
cm-1 is estimated. 

Force constants of the oxalate ion as well as of oxalic 
acid have been derived from infrared and Raman meas- 
urements by Murata & Kawai (1956) who supposed an 
Urey-Bradley force field. For the case of a load applied 
parallel to e3 the following simplifying assumptions are 
made: (1) the stretching constants K(C-O) and K(C-C), 
which are considerably larger than all bending con- 
stants H and repulsive constants F, shall be neglected; 
(2) the C-C direction is not changed. Then, from simple 
considerations the following force constants may be 
derived for the CO0  group and the COOH group, 
using the potential constants given by Murata & Kawai 
(1956): 

fcoo = 1.04, fCOOH = 1"26. 105 dyne cm -1. 

These constants relate the displacement parallel to e3 
with a force which acts also parallel to e3. According to 
equation (1), flom these force constants the force con- 
stant f of the whole hydrogen oxalate unit can be de- 
duced: 

f=0"31 . lO s dyne cm- ' .  

On the other hand, f will now be estimated from the 
macroscopic elastic stiffness parallel to e3. If a rectan- 
gular specimen is subjected to a stress a33, the resulting 
strain e33 is determined by 

C33 = S;3330"33 • (2) 

For a single spring, the displacement AI resulting from 
the application of a force K (both in the direction of 
the spring axis) is given by AI= K/fi Dividing K by the 
area F required by one spring (i.e. 'cross section' of one 
oxalate residue) yields the stress a=K/F.  Strain e is 
given by the ratio All1, I being the length of the spring 
(i.e. the distance between two adjacent oxalate residues 
in the chain). Thus: 

F . o  
~ . l - -  

f 

By comparison with equation (2), the following expres 
sion for f is obtained : 

F (3) 
f =  s . / "  

Fig. 5. (010) section of the slowness surface, r=energy flux 
vector due to wave normal k. 

O = o  

O = e  ( ~  
O =H 

o4 H 
. . . .  

C ~  2 .-,.. 

Fig. 6. Arrangement of the hydrogen oxalate ions linked by 
hydrogen bonds. 
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In the case of KHC204, l =  5.1 A ( =  a3/2), F= 20 A 2, 
and s =  1 .3 .10  -lz cm 2 dyne -1. These values yield a 
force constant f - - 0 . 3 0 ,  l0 s dyne cm -~, which is in 
reasonable agreement with the value f derived from 
force constants as determined from optical measure- 
ments. 

The actual value o f f  should be somewhat lower be- 
cause the influence of some force constants, which con- 
tribute to an increase of the compliance of the whole 
unit, was neglected. On the other hand, f,  as derived 
from the elastic constants, is not only caused by the 
forces given in Fig. 6 but also, to a smaller extent, by 
some ionic forces due to the cation. 

Cauchy relations 
According to Hausstihl (1967), the deviations from 

Cauchy relations constitute a second-rank tensor grs 
which represents information about bonding charac- 
teristics. In the case of  KHC204 the components of the 
reduced tensor g*s=grs. K (with K=vo lume  compres- 
sibility) have the following values: 

g~'l = - 0-024; g~'2 = 0"318 ; g~'3 = 0.746; g~'3 = 0.014. 

The principal axes of this tensor nearly coincide with 
the Cartesian system. Here also an appreciable anisot- 
ropy is observed. Characteristically, g~t, which repre- 
sents the forces in the cleavage plane (100), is found to 
have the lowest value. A similar behaviour is found in 
gypsum (Haussiihl, 1967). 

The author is deeply indebted to Professor Dr  S. 
Haussiihl for making experimental arrangements avail- 
able and for critical remarks. Thanks are also due to 

Dr  H. Siegert whose computer program was used and 
to Professor Dr  H. Pettersen for reading the manu- 
script. 
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An Automated Deconvolution of the Patterson Synthesis by Means of a Modified Vector- 
Verification Method. Its Application to Some Heavy-Atom Patterson Functions 

BY A. T. H. LENSTRA* AND J. C. SCHOONE 
Laboratory for Crystal Chemistry, Rijksuniversiteit Utrecht, The Netherlands 

(Received 2 December 1971 ; accepted 25 January 1973) 

A general scheme for the deconvolution of the Patterson-vector map is discussed, in which no structural 
information is needed. It appears to be possible to overcome the difficulties arising from vector overlap 
and vector coincidence. The vector-verification method is extended so as make it possible to locate every 
configuration of a small, fixed number of atoms, for which the complete corresponding vector set is pres- 
ent in the Patterson function. A criterion is defined which expresses the reliability of each configu- 
ration, making it possible to recognize the correct one. 

1. Introduction 

We employed the Patterson superposition method to 
develop an automated structure-determination proce- 

* Present address: Universitaire Instelling Antwerpen, de- 
partement Scheikunde, Universiteitsplein 1, 2610 Wilrijk, 
Belgium. 

dure, in which no a priori structural information is 
needed (Lenstra, 1969). Having but restricted computer 
facilities available it was not possible to handle the 
symmetry minimum function (Simpson, Dobrott  & 
Lipscomb, 1965) adequately. For  this reason we have 
used the vector-verification method (Mighell & Jacob- 
sen, 1963). 


